Comparative study of Deep Learning models for segmenting abdominal adipose tissue in CT scans

Authors

  • Juan Pablo Reyes Gómez Universidad de los Andes, Bogotá
  • Porras Amaya Universidad de los Andes, Bogotá
  • Leonardo Mejía Bustos Universidad de los Andes, Bogotá
  • Luis Felipe Uriza Carrasco Hospital Universitario San Ignacio, Pontificia Universidad Javeriana, Bogotá
  • Alvaro Ruiz Morales Pontificia Universidad Javeriana, Bogotá
  • Diego Ortiz santos Hospital Manuel Uribe Ángel, Clínica Sagrado Corazón, Bogotá
  • Catalina Barragan Fundación Santa Fe de Bogotá
  • Carlos José Castro Clínica del Country, Clínica de la Colina, Clínica los Nogales, Bogotá
  • Marcela Hernandez Hoyos Universidad de los Andes, Bogotá

DOI:

https://doi.org/10.53903/01212095.280

Keywords:

Abdominal fat, Intra-abdominal fat, Tomography, X-Ray computed

Abstract

Purpose: Body composition analysis is a test that measures the proportion of various tissues of a person’s body. It serves as an indicator for certain medical conditions such as metabolic syndrome, cancer, diabetes, or cardiovascular disease. Traditionally, these analyses are done using
anthropometric methods or clinical tools that provide an approximated result. Using the family of U-NET Deep Learning architectures, we perform a fully automatic segmentation of visceral and subcutaneous abdominal adipose tissues. We study these segmentation results and compare them against semiautomatic and manual generated ground truths. Materials and methods: We employ several variations of the U-Net Deep Learning architecture: U-Net, R2U-Net, Attention U-Net, and
Attention R2U-Net. These methods were trained on a dataset, which consists of 554 images from the
Hospital Universitario San Ignacio and IDIME Institute in Bogota, Colombia, collected from 2015 to 2017. This dataset contains annotations for three different tissues: visceral fat, subcutaneous fat and other tissue generated through semiautomatic segmentation tools. Results: Sørensen-Dice index is used as the evaluation metric against the ground truth which consists of manual segmentations performed by experts. We obtained that the U-Net architecture was the most accurate in terms of overall body composition segmentation, with a mean Dice score of 93.0%, followed closely by the Attention U-Net architecture. Conclusions: We found that the U-Net and Attention U-Net architectures are more suited for body composition analysis. The segmentation results produced by these methods could be used to obtain precise metrics and help physicians understand the patient’s physical condition.

Downloads

Download data is not yet available.

References

Afshin A, Vos T, Murray C, Fernandes J, Silverberg J, Bjertness E, et al. Health effects of overweight and obesity in 195 countries over 25 years. New Eng J Med. 2017;377: 13-27

González MC, Pastore C, Orlandi S, Heymsfield S. Obesity paradox in cancer: New insights provided by body composition. Am J Clin Nut. 2014;99

Seabolt LA, Welch EB, Silver HJ. Imaging methods for analyzing body composi¬tion in human obesity and cardiometabolic disease. Ann New York Acad Sci. 2015;1353:41-59

Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation [Presentación]. En: Computación de imágenes médicas e intervención asistida por computadora (MICCAI). 2015. Disponible en: https://link.springer.com/chapter/10.1007/978-3-319-24574-4_28

Lee S, Liu J, Yao J, Kanarek A, Summers R, Pickhardt P. Fully automated segmentation and quantification of visceral and subcutaneous fat at abdominal CT: Application to a longitudinal adult screening cohort. Br J Radiol. 2018;91:20170968

Hui SCN, Zhang T, Shi L, Wang D, Ip CB, Chu WCW. Automated segmentation of abdominal subcutaneous adipose tissue and visceral adipose tissue in obese adolescent in MRI. Magn Resonan Imag. 2018;45:97-104

Nemoto M, Yeernuer T, Masutani Y, Nomura Y, Hanaoka S, Miki S, et al. Develop¬ment of automatic visceral fat volume calculation software for CT volume data. J Obesity. 2014;2014:495084

Wang Z, Hounye A, Zhang J, Hou M, Qi M. Deep learning for abdominal adipose tissue segmentation with few labelled samples. International J Comp Assis Radiol Surg. 2021;17

Micomyiza C, Zou B, Li Y. An effective automatic segmentation of abdominal adipose tissue using a convolution neural network. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2022;16:102589

Li H, Luo H, Liu Y. Paraspinal muscle segmentation based on deep neural network. Sensors. 2019;19:2650

Estrada S, Lu R, Conjeti S, Orozco-Ruiz X, Panos-Willuhn J, Breteler MMB, et al. FatSegNet: A fully automated deep learning pipeline for adipose tissue segmentation on abdominal dixon MRI. Magn Reson Med. 2020;83:1471-83

Alom MZ, Hasan M, Yakopcic C, Taha TM, Asari VK. Recurrent residual convolu¬tional neural network based on U-Net (R2U-Net) for medical image segmentation [internet]. 2018 [citado: 2023 feb. 15]. Disponible en: https://arxiv.org/abs/1802.06955

Oktay O, Schlemper J, Folgoc LL, Lee M, Heinrich M, Misawa K, et al. Attention U-Net: learning where to look for the pancreas [internet]. 2018 [citado: 2023 feb. 15]. Disponible en: https://arxiv.org/abs/1804.03999

Zhang L, Zuo Q, Chen S, Wang Z. R2AU-Net: Attention recurrent residual convo¬lutional neural network for multimodal medical image segmentation. Sec Commun Net. 2021;2021:6625688

Weston AD, Korfiatis P, Kline TL, Philbrick KA, Kostandy P, Sakinis T, et al. Auto¬mated abdominal segmentation of CT scans for body composition analysis using deep learning. Radiology. 2019;290:669-79

Dabiri S, Popuri K, Cespedes E, Caan B, Baracos V, Beg MF. Deep learning method for localization and segmentation of abdominal CT. Comput Med Imag Graph. 2020;85:101776

Hemke R, Buckless C, Tsao A, Wang B, Torriani M. Deep learning for automated segmentation of pelvic muscles, fat, and bone from CT studies for body composition assessment. Skel Radiol. 2019;49

Koitka S, Kroll L, Malamutmann E, Oezcelik A, Nensa F. Fully automated body composition analysis in routine CT imaging using 3D semantic segmentation convo¬lutional neural networks. Eur Radiol. 2020;31.

Published

2023-06-30

How to Cite

(1)
Reyes Gómez, J. P.; Porras Amaya; Mejía Bustos, L.; Uriza Carrasco, L. F.; Ruiz Morales, A.; Ortiz santos, D.; Barragan, C.; Castro, C. J.; Hernandez Hoyos, M. Comparative Study of Deep Learning Models for Segmenting Abdominal Adipose Tissue in CT Scans. Rev. colomb. radiol. 2023, 34, 5995-6004.

Issue

Section

Research articles
Crossref Cited-by logo
QR Code